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1 Hidden Markov Model Estimates

We follow the definition of Couvreur [1] to formalize the Baum-Welch algorithm. We have to solve
following optimization problem

B̂ ∈ arg max
B∈B

S∑
s=0

L∑
j=0

rsj log bs(x·j), (1)

where S gives the HMM’s states, L the dimension of the data X, rsj the posterior probability, bs the
probability mass function for state s, x·j the genomic signal for bin j and B the set from where we have
to choose the free parameters. In our case, the probability mass function bs is given by

bs(x·j) =
∏
k≤|G|

∏
i∈Gk

g(xij |ΘsGk
),

where G contains the sets of all experiments, Gk contains all indices that belong to condition k, and
ΘsGk

are the unknown parameters associated to function g. We choose a Negative Binomial distribution
(Ismail and Jemain [2]) as emission distribution g, that is,

g(xij |ΘsGk
) =

Γ(xij + a−1
sGk

)

Γ(xij + 1) · Γ(a−1
sGk

)
·

(
a−1
sGk

a−1
sGk

+ µsGk

)a−1
sGk

·

(
µsGk

a−1
sGk

+ µsGk

)a−1
sGk

, (2)

with free parameters ΘsGk
= {asGk

, µsGk
}, where asGk

is the dispersion parameter and where µsGk

gives the location.
In our case, we have |G| = 2 conditions and S = 3 HMM’s states. Given Equation 1, we therefore

have to solve 6 optimization problems to determine B̂, that is, determining ΘsGk
for each condition

and state. As described in the main document, we follow a moment approach and restrict our estimates
to µsGk

. We first compute µsGk
, and then use the mean variance function to estimate asGk

from µsGk
.

That is, we constrain our optimization space to ΘsGk
= {µsGk

}. To avoid label switching problems in
the HMM (Rabiner [3]), we furthermore restrict our HMM’s emission, such that,

• µ1G1 = µ2G2 = µhigh,

• µ1G2 = µ2G1 = µlow, and

• µ3G1 = µ3G2 = µlow.

Consequently, we only have to solve 2 optimization problems, that is, determining µhigh and µlow, to
solve Equation 1. Here we show the estimation of µhigh = µ11 = µ22. The other parameter estimates
follow respectively.
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We restrict our optimization space, such that µhigh only depends on s = 1 and s = 2. We then rewrite
Equation 1 as

arg max
µhigh∈Θ

∑
k≤|G|

∑
i∈Gk

L∑
j=0

r2j log g(xij |µ2Gk
) +

∑
k≤|G|

∑
i∈Gk

L∑
j=0

r1j log g(xij |µ1Gk
)

=arg max
µhigh∈Θ

∑
i∈G1

L∑
j=0

r2j log g(xij |µ2G1) +
∑
i∈G2

L∑
j=0

r2j log g(xij |µ2G2)

+
∑
i∈G1

L∑
j=0

r1j log g(xij |µ1G1) +
∑
i∈G2

L∑
j=0

r1j log g(xij |µ1G2)

=arg max
µhigh∈Θ

f(µhigh)

We define a function f depending on µhigh. As we want to optimize f , we derive f and obtain

f

δµhigh
=

∑
i∈G2

∑L
j=0 r2j log g(xij |µ2G2)

δµhigh
+

∑
i∈G1

∑L
j=0 r1j log g(xij |µ1G1)

δµhigh

=
f1

δµhigh
+

f2

δµhigh
(3)

Sums containing µ2G1 and µ1G2 are constants while deriving f with regard to µhigh and therefore are no
longer considered. To simplify the notation, we introduce functions f1 and f2, which we have to derive
separately to obtain the derivation of f .
The derivation estimation for f2 works respectively. Accordingly to Ismail et al. [2], we can rewrite
Equation 2 as

g(xij |ΘsGk
) =

( xij−1∑
h=1

ln(1 + asGk
h)

)
− xij · ln(asGk

)− ln(xij !) + xij · ln(asGk
· µsGk

)

− (xij + a−1
sGk

) · ln(1 + asGk
· µsGk

) (4)

We plug in Equation 4 in function f1 of Equation 3. The derivation of f1 is given by

f1

δµhigh
=
∑
i∈G2

L∑
j=0

rij
xij − µhigh

µhigh + a1µ2
high

We plug in f1/δµhigh and f2/δµhigh in Equation 3, set f/δµhigh to 0 and obtain the parameter µ̂1 that
optimize function f . That is, we write

f

δµhigh

!
= 0 =

∑
i∈G2

L∑
j=0

rij
xij − µhigh

µhigh + a1µ2
high

+
∑
i∈G1

L∑
j=0

rij
xij − µhigh

µhigh + a1µ2
high

⇒ µ̂1 =

∑
i∈G2

∑L
j=0 r2jxij +

∑
i∈G1

∑L
j=0 r1jxij

|G2|
∑L

j=0 r2j + |G1|
∑L

j=0 r1j

Parameter µ̂low is computed accordingly.
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2 ChIP-seq Simulator with Replicates

Evaluation and comparison of differential peak callers is still an open problem. There are no datasets
which can serve as a gold standard in the evaluation procedure. To overcome the lack of ground truth
simulated datasets with true positive peaks can be designed. The simulation of single ChIP-seq datasets
has already been addressed [4, 5, 6]. However, these approaches either cannot be directly used in the dif-
ferential peak calling problem as they focus on single ChIP-seq signals [4, 5], or are not freely available
and does not parametrize the variance between replicates [6]. Therefore, we developed an algorithm
inspired by Humburg [5] to generate ChIP-seq reads simulating a pair of biological conditions with
differential peaks [7]. Here we extensively extend improved our previous approach [7] to deal with
replicates.

2.1 Method

For a given reference genome the procedure is: (1) selecting genomic regions to include protein domains
(set of neighboring binding proteins), and sampling the number of proteins in a domain, (2) sampling
and placement of fragments per protein, (3) assigning fragments to a replicate and a biological condition,
(4) adding noise to the data and (5) deriving reads from the fragments and defining differential peaks
(DPs). We use the original position of the proteins and the proportion of reads to define DPs. Figure 3
pictures the workflow of the simulation.

Compared to our previous approach [7], we comprehensively expanded our simulation algorithm.
In regard to step (1), we refine the estimation of the space between proteins within the same domain by
using empirical data on histone positioning. Concering step (2), we improve the function determining
the number of fragments per protein to obtain MA plot distributions resembling real ChIP-seq data. We
also use now a Beta distribution for the allocation of reads to distinct replicates in step (3). Finally, step
(4) is novel.

2.1.1 Creating Protein Domains

We define n protein domains (Di)i=1...n for a chromosome C. Repeated regions as well as unassembled
parts of the genome are ignored. For each protein domain Di, we sample the actual number qi of
proteins (Pi,j)j=1...qi that are contained. The protein number qi follows a Negative Binomial distribution
qi ∼ NBm1,p1 . We determine the positions ri,1 of the first protein Pi,1 by uniformly selecting a position
within the chromosome: ri,1 ∼ U [C]. We then place further proteins ri,j with a particular space between
each other, that is, ri,j = ri,1 +

∑j−1
k=1 bk (j ∈ {2 . . . qi}). The spacing variable bk follows a mixture

of normal distributions bk ∼
∑

l cl ·Nµl,σ
2
l
. Here, we extend our previous approach [7], where we only

define a constant spacing between proteins.

2.1.2 Sampling Fragments

We sample the fragments {Fi,j,l} that are bound to the protein Pij . The length si,j,l of each fragment
Fi,j,l follows a normal distribution si,j,l ∼ Nµ,σ2 . Fragments are assigned randomly to each DNA strand
and always cover the entire length oi,j of the protein Pi,j to which they are assigned to. However, since
fragments are usually larger than the corresponding proteins, the fragments’ midpoint mi,j,l is randomly
moved up- or downstream. That is, mi,j,l = ri,j + t with t ∼ U [−(si,j,l − oi,j), (si,j,l − oi,j)].

The number l of fragments to sample is given by l = f · p where p follows a Negative Binomial
distribution p ∼ NBm2,p2 . MA plots of the distribution of read counts have a typical shape, that is, a
non-linear decrease of the A values with an increase of M values. We model the non linearity by using
factor f which is described by a Laplace function:

fb,µ(di,j) =
1

2b
exp

(
−|di,j − µ|

b

)
, (5)
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with b = 0.5, µ = 0.2 and where di,j gives the ratio of fragments that are assigned to the first or
second biological condition. Sup. Figure 4 shows an example of a MA plot of data samples with such
parameters. The factor f0.5,0.2 causes the typical non linear relationship betweenM andA values. Using
factor f to compute the number l of fragments is a further difference to our simulator of ChIP-seq reads
without replicates [7]. The simulator without replicates does not account for the non-linearity property
of the MA-plot.

2.1.3 Assigning Fragments

For each Pi,j the ratio di,j follows a beta distribution B(0.5, 0.5). Fragments of the first or second
biological condition are then assigned to the replicates. The beta distribution B(0.5, 0.5) is symmetrical
to 0.5 and tends to assume the extreme values 0 and 1. We thereby increase the probability that fragments
are mostly assigned to one signal which could potentially results in a DP. For each protein domain Pi,j
and each biological condition, we randomly choose a replicate and assign fragment Fi,j,l to it.

For n replicates of one signal and for a constant vector α = 〈α0, . . . , α0〉 of length n where α0

describes the variance to distribute fragments among the replicates, the probability distribution to assign
fragments to replicates is given by a Dirichlet distribution of order n

f(x, α) =
1

B(α)

K∏
i=1

xαi−1
i ,

with

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) .
For each fragment, we follow the sampled probabilities to assign it to a replicate. The lower α0, the
higher is the variance within the replicates. In our previous simulation approach, we only use a con-
stant ratio to determine the assignment of fragments to ChIP-seq profiles. The use of beta distribution
therefore is another extension of our current simulation algorithm.

2.1.4 Adding Noise

We follow Zhang et al. [4] to add noise to each replicate. We divide the genome into bins and assign a
random weight to each bin. We assume that the majority of noise fragments in a ChIP-seq experiment
appear in single locations, but some of them build dense clusters. We therefore use a right skewing
gamma distribution to model a bins’s weight.

Accordingly to the weights, we randomly sample t bins. Within each bin, we determine one fragment
with a uniformly chosen position. The number t of chosen bins for replicate r is defined as

t = min

(
#fragments

FRiP
,
b · genome’s length

read’s length

)
.

FRiP is the fraction of reads in peaks. We use a FRiP of 5% which is the lowest threshold for ChIP-
seq profiles recommended by Landt el al. [8]. To have the number t invariant towards genome’s length,
we multiply the ratio of genome’s and read’s length by b. The variable b gives the average background
coverage.

2.1.5 Defining Differential Peaks

Reads are obtained by getting the initial u base pairs of fragments in the forward strand (or the last u
base pairs of the reverse strand). We define a true DP for the first (second) signal when the number
of fragment in the first (second) sample is higher than a given threshold e and at least v fragments are
present in the first (second) signal, that is,
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| {Fi,j,l}
∣∣
sample i |

| {Fi,j,l} |
> e and

∣∣{Fi,j,l}∣∣sample i ≥ v,

where {Fi,j,l}|sample i gives the fragments of sample i. The position of the DP is defined by the protein
position ri,j . We output the reads of each replicate in a fasta file.

2.2 Evaluation

2.2.1 Metric

A genomic region r = (rs, re) is described by its starting position rs and ending position re. We omit
the chromosome information as we restrict our analysis to one chromosome. The intersection of two
genomic regions r1 = (r1s, r1e) and r2 = (r2s, r2e) is defined as

r1 ∩ r2 =

{
(max(r1s, r2s),min(r1e, r2e)) if r1 and r2 overlap,
∅ else.

The subtraction of two genomic regions is defined as

r1− r2 =



(r1s, r2s) if r1 and r2 overlap, r1s < r2s, r1e < r2e,

(r2e, r1e) if r1 and r2 overlap, r1s > r2s, r1e > r2e,

{(r1s, r2s), (r2e, r1e)} if r1 and r2 overlap, r1s < r2s, r1e > r2e,

∅ if r1 and r2 overlap, r1s > r2s, r1e < r2e,

(r1s, r1e) else.

For two sets of genomic regions the subtraction and intersection operation is performed element-wise.
The size of a genomic region set is defined as the sum of all genomic region’s length.

Let T be the genomic region set of true positive DPs given by the simulation. Moreover, let PA =
{p1, . . . , pm} be the genomic region set of DPs that are predicted by algorithm A. Let

Ŷi =
|pi ∩ T |
|T |

and X̂i =
|pi − T |

|genome− T |

describe the ratio of the true and false called DPs respectively normalized against the size of true positive
DPs and the genome. Element-wise addition of the p-value sorted list Di = 〈X̂i, Ŷi〉 gives the j-th data
point

∑
j≤iDj of the plot.

2.2.2 Parameter Setting

One important parameter is the length between the proteins bi. Since we are interested in modelling
histones, we estimate mixture model parameters by using histone position data in yeast [9]. For this,
we randomly take 10, 000 consecutive histone positions and fit a mixture normal distribution to their
distance. We ignore positions which are 500bp away from each other, as we assume that these positions
belong to two different histone domains. Bayesian information criterion (BIC) shows that 2 components
fit best for the mixture model (−1.5 · 102). We define the minimum distance between proteins/histones
as the sum of the usual estimate of histone size (147bps) and the average linker size (55bps) (Szerlong
and Hansen [10]).

We generate n = 10, 000 protein domains per dataset. ChIP fragments typically have a length of
200 bp (Furey [11]). We therefore model the fragment’s size with mean µ = 200 and standard deviation
σ = 20. The standard deviation follows estimates taken from paired-end sequencing data reported
by Marschall et al. [12]. The minimum number of reads to support a DP v is 25 and the ratio e for
definition of a DP is defined as e = 0.6. We use a typical read size u of 26. We use chromosome 1
of the mouse genome (mm9) as reference genome. Reads were aligned to chromosome 1 using BWA
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with default parameters. In accordance with Landt et al. [8], the fraction of reads in peaks (FRiP) is
0.05. Our empirical studies have shown that the average background coverage b should be around 0.25
in ChIP-seq experiments. We use m1 = 8 and p1 = 14 for the Negative Binomial distribution NBm1,p1

describing the number of proteins in a protein domain. We repeat each experiment 25 times. Sup. Fig. 5
gives two examples for simulated ChIP-seq profiles.
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3 Competing Methods

Here, we describe all differential peak callers which provide support for replicates. See Table 3 for an
overview of the tool’s characteristics. Some of these tools require results of a single signal peak caller.
We use MACS2 on pooled replicates for this task.

Csaw Csaw (Aaron et al.[6]) main method is a based on a window-based approach to segment ChIP-seq
profiles. A modified version of the TMM method is applied to normalize the CHIP-seq signal on 10kbp
bins. EdgeR (Robinson et al.[13]), which is based on Negative Binomial distribution test, is used to as-
sign a p-value to each differential peak. Latter, consecutive significant bins are merged to form final DPs
followed by a correction of p-values following a sime’s method. Input-DNA is not used to normalize
ChIP-seq signals, but only in a postprocessing step to filter out potential DPs. Further, csaw does not
normalize against GC-content and does not estimate the fragmentation size. As suggested by the authors,
we use a window size of 150bp and a step size of 25bp. All other paprameters are set as default. We
were not able to run CSAW on simulated data, even when trying out distinct parameters as used in the
real data.

PePr PePr (Zhang et al. [14]) follows a window-based strategy to detect DPs. The windows size is
automatically computed and equals the estimated average width of initially called peaks. PePr nor-
malize the input-DNA to the mean of all ChIP-seq signals, computes the fold change of input-DNA
and ChIP-seq signal and follows the TMM approach to globally normalize across different ChIP-seq
profiles. PePr requires input-DNA to run. To check for DPs, first read counts are modelled by a
Negative Binomial distribution and second Wald’s test is applied to check for significance in read
counts. Furthermore, PePr provides estimation of fragment size, input subtraction, filtering of peaks
with strand bias, but does not correct for GC-content. We follow the instructions on their webpage
(https://ones.ccmb.med.umich.edu/wiki/PePr/) including a procedure to remove arti-
facts in ChIP-seq data. To obtain a number of DPs comparable to other tools, we increase the p-value
threshold parameter to 0.01.

MACS2 MACS2 (unpublished, available at https://github.com/taoliu/MACS/) works in
two steps. First, all ChIP-seq profiles are pooled together and MACS2 SPC’s algorithm (callpeak) is
executed for each condition. Second, we use bdgdiff to identify DPs within these peaks. The SPC nor-
malize against input-DNA and also considers GC-content. MACS2 differential peak method works by a
sliding window approach on candidate regions (personal communication). There are no formal descrip-
tions on its parameters and the strategy for normalization. Initially, MACS2 called too few DPs, such
that we had to decrease both the minimum length for DPs by using l = 50 and the fold-change cutoff by
using C = 1.5 in the algorithm bdgdiff. Moreover, we increased the p-value threshold to 0.2 to increase
the number of peaks for the algorithm callpeak. For the simulated data, we used default parameters.

DiffBind DiffBind (Stark and Roy [15]) is a two-stage differential peak methods based on single peak
candidate genes and edgeR. First, the peak lists are merged to obtain consensus peaks. The number of
reads falling in to these consensus peaks are counted and a statistical model based on edgeR(Robinson
et al.[13]) is estimated to call DPs. Normalization is done by TMM after input-control is subtracted
from ChIP-seq profiles. Neither the fragmentation size nor GC-content is estimated by DiffBind. As
recommended by authors, we use DiffBind with parameter minOverlap equals 3 in the count function to
only consider peaks supported in up to three replicates across all conditions. Moreover, we increase the
threshold for significant DPs (th=0.1).

DiffReps DiffReps (Shen et al. [16]) performs a sliding window approach to identify potential DPs.
DiffReps globally normalizes by the geometric mean for each sample. Also, DiffReps takes input-DNA
into account to normalize the ChIP-seq profiles. A pre-screening test ensures that only bins with a suffi-
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cient number of reads are taken into account. DiffReps uses a negative binomial test based on Anders et
al. [17] to detect DPs. We run DiffReps with default parameters, that is, we use a window size if 1000bp
and a step size of 100bp. We set the significance threshold for called DP (by using the option –pval 0.1).

DESeq-IDR Here we combine DESeq (Anders et al. [17]) and IDR(Landt el al. [8] and Li et al. [18])
to call DPs. DESeq is a tool to analysis differential gene expression and is commonly used to detect
DPs (Liang et al. [19]). IDR is a method to define for a set of technical replicates a list of peaks with
high consistency within the replicates. We follow the framework of ENCODE for the IDR computa-
tion (see https://sites.google.com/site/anshulkundaje/projects/idr). We use
an IDR threshold of 0.01 for the replicates, an IDR threshold of 0.02 for the self-consistency repli-
cates, and an IDR threshold of 0.0025 for the pooled pseudo replicates. We then apply DESeq with
default parameters to check for DPs. DESeq takes the median of observed counts which are normalized
with the geometric mean. Further, DESeq models the counts with a Negative Binomial distribution and
uses these estimated functions to compute a p-value for each DP. We refer to this method as DESeq-IDR.

DESeq-JAMM We also use JAMM (Ibrahim et al. [20]), a recently published peak caller that takes
replicates into account, to define a peak list for DESeq. We refer to this method as DESeq-JAMM. We
use the SPC JAMM for our simulated datasets where we run it with default parameters. We were unable
to execute JAMM on the biological data. JAMM takes input-DNA into account and subtracts it from
ChIP-seq profiles. However, DESeq-JAMM does not apply any filter to avoid strand bias in DPs and
does not take GC-content into account.
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Supplementary Figure 1: Housekeeping genes normalization approach. The left panel shows two FL (red
signal) and two CC (green signal) data set from LYMP. Boxes in signals contain peaks where its peak
mass is given. The bold box is the promoter of a house keeping gene used used for the normalization.
In this cartooned example, the normalization procedure gives 0.8 for FL14, 1.7 for FL16, 0.5 for CC3
and 2.5 for CC4 as normalization factor. The right panel shows the normalized signal with updated
mass values of each peak located in a box. The housekeeping gene normalization approach brings all
ChIP-seq signals to the same scale for any further downstream analysis steps.

Supplementary Figure 2: Hidden Markov Model to identify DPs. The emission distributions (dotted
lines) are assigned to each state and are based on Negative Binomial distributions. To avoid label switch-
ing and reduce number of free parameters, we constraint several parameters of the emission distributions.
That is, the location parameter associated to gain peaks are equal µ1G1 = µ2G2 (µhigh), as well as the
location parameter associated to lost peaks and background states µ2G1 = µ1G2 and µ3G1 = µ3G2

(µlow).
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Supplementary Figure 3: Workflow to simulate ChIP-seq data. First, unassembled and repeated regions
are marked and ignored in the further progress. We then uniformly place domains of proteins in the
genome. Here, domain D1 contains proteins P11, P12, P13 and P14, and Domain D2 contains proteins
P21, P22 and P23. The spacing between two proteins of a domain, e.g. b2 between protein P12 and P13,
is sampled from a mixture normal distribution. Next, fragments are assigned to a protein, e.g. fragment
F148 is associated to protein P14. In the next step, fragments are assigned to both biological conditions
(S1, S2) as well as replicates (black, white). We add noise to the data and define reads as the beginning
or ending part of the fragments. We find a DP gaining S1 and another DP gaining S2 in domain D1.
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Supplementary Figure 4: MA-plot for simulated ChIP-seq data. We use mean m1 = 8 and variance
p1 = 14 for the negative binomial distribution describing the protein domains. The number of fragments
assigned to each protein follows a negative binomial distribution with mean m1 = 150 and variance
p1 = 10000. We have 2 replicates for each condition with α0 = 5 for a moderate variance between the
replicates. The use of the Laplace function (Equation 5) leads to the typical shape for the MA-plot.

Supplementary Figure 5: Example for simulated data. A) An DPC problem with 3 replicates in each
condition, moderate peak size variance and low within condition variance. B) A hard DPC problem with
4 replicates, high peak size variance and high within condition variance. We use the same among of
reads for each simulated scenario, such that cases with low number of replicates contain more reads per
replicates than cases with high number of replicates. Moreover, we show the true positive DPs for both
scenarios.
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Supplementary Figure 6: Gene expression based DCA curves for CO study. PePr required input-DNA
and is therefore unable to call DPs.

Supplementary Figure 7: Gene expression based DCA curves for DC study.
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Supplementary Figure 8: Gene Expression based DCA curves for LYMP study. The DCA score is based
on gene expression derived from microarray data.

Supplementary Figure 9: Gene Expression based DCA curves for MM study. PePr required input-DNA
and is therefore unable to call DPs.
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Supplementary Figure 10: Histone based DCA curves for CO study. The DCA score is based on a
cross-validation with histones: H3K4me1 peaks evaluated with H3K36me3 and Pol2; H3K36me3 peaks
evaluated with H3K4me1 and Pol2. PePr required input-DNA and is therefore unable to call DPs.
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Supplementary Figure 11: Histone based DCA curves for DC study. Peaks were detected on H3K27ac
and evaluated on H3K4me1 marks.
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Supplementary Figure 12: Histone based DCA curves for MM study. The DCA score is based on a cross-
validation with histones: H3K27ac evaluated with H3K4me1 and H3K4me3; H3K4me1 evaluated with
H3K27ac and H3K4me3; and H3K4me3 evaluated with H3K27ac and H3K4me1.
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Supplementary Figure 13: Histone based DCA curves for LYMP study. Peaks were detected on
H3K27ac and evaluated with H3ac marks. PePr required input-DNA and is therefore unable to call
DPs.

Supplementary Figure 14: Association between the difference in expression based DCA values for
THOR normalization approaches (THOR-HK - THOR-TMM) vs. the overdispersion scores (A) and
average FRIP (B). We also depict the association between the differences in expression based DCA
scores of the best competing method and THOR and the overdispersion factor (C).
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Supplementary Figure 15: Average DP sizes of each tool. The boxplot of each tool gives the DP size
distribution obtained from predictions on all biological data.
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AUC
THOR-1.6/95 2.2857
THOR-1.3/95 2.4286
THOR-1.6/99 2.5
THOR-1.3/99 2.7857

Supplementary Table 1: Friedman ranking based on expression based DCA score (h = 100, H = 1000).
We evaluate the initial parameter setting of THOR, that is, t1 ∈ {〈x〉.95, 〈x〉.99} and t2 ∈ {1.3, 1.6}
where t1 is the fold change criteria and t2 the minimum difference between signals based on percentile
estimates (see main document Section 4.3.4 for details). The analysis is restricted to chromosome 1. For
each metric, the methods are displayed in decreasing order with their respective Friedman ranking.

T
H

O
R

-1
.6

/9
5

T
H

O
R

-1
.3

/9
5

T
H

O
R

-1
.6

/9
9

T
H

O
R

-1
.3

/9
9

THOR-1.6/95
THOR-1.3/95
THOR-1.6/99
THOR-1.3/99

Supplementary Table 2: Friedman-Nemenyi hypothesis test results for the expression based DCA score
(h = 100, H = 1000) restricted to chromosome 1. The asterisk and the cross, respectively, mean that
the method in the column outperformed the method in the row with significance levels of 0.05 and 0.1.

19



O
ne

-S
ta

ge
D

PC

Se
gm

en
ta

tio
n

St
ra

te
gy

st
at

is
tic

al
m

od
el

D
P

fr
ag

.s
iz

e
es

tim
at

io
n

in
pu

t-
D

N
A

no
rm

.

Su
bt

ra
ct

in
g

in
pu

t-
D

N
A

G
C

-c
on

te
nt

in
pu

t-
D

N
A

no
tr

eq
ui

re
d

st
ra

nd
bi

as

THOR × HMM NB × × × × × ×
PePr × win Wald’s test × × × ×

diffReps × win NB × ×
csaw × win NB ×

MACS2 SPC NA × NA NA NA × NA
DiffBind SPC NB × ×

DESeq-IDR SPC NB ×
DESeq-JAMM SPC GMM, NB × × ×

Supplementary Table 3: Tool’s characteristics. Differential peak callers can be categorized in one-stage
or two-stage approaches using either an HMM or a window-based approach to segment the ChIP-seq
profiles. They perform a statistical test based on a Negative Binomial (NB) distribution, Wald’s test or
Gaussian mixture model (GMM) to identify DPs. Input-DNA can be normalized and may be used to
subtract it from ChIP-seq profiles. Also, normalizing against GC-content may prohibit bias in profiles.
For DESeq-JAMM, JAMM uses GMM to detect peaks and DESeq uses NB to detect DPs. JAMM
subtracts the input-DNA from ChIP-seq profiles.
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AUC
THOR 1.0652
MACS2 3.0598
DESeq-JAMM 3.9185
DiffReps 4.087
DESeq-IDR 4.4891
DiffBind 5.0761
Poisson-THOR 6.3043

Supplementary Table 4: Friedman ranking of simulated data for all parameter settings based on the AUC
statistic (see main document Section 4.3.3 for details). The methods are displayed in decreasing order
with their respective Friedman ranking.
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MACS2 ∗

DESeq-JAMM ∗ +

DiffReps ∗ ∗
DESeq-IDR ∗ ∗

DiffBind ∗ ∗ ∗ ∗
Poisson-THOR ∗ ∗ ∗ ∗ ∗ ∗

Supplementary Table 5: Friedman-Nemenyi test results based on the AUC statistic of simulated data for
all scenarios. The asterisk and the cross, respectively, mean that the method in the column outperformed
the method in the row with significance levels of 0.05 and 0.1.
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MACS2
DiffReps ∗
DiffBind ∗ ∗ +

DESeq-JAMM ∗ ∗ ∗
Poisson-THOR ∗ ∗ ∗ ∗

Supplementary Table 6: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the
case with 2 replicates, low within condition variance, and moderate peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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DiffBind ∗ ∗ +

DESeq-JAMM ∗ ∗ ∗
Poisson-THOR ∗ ∗ ∗ ∗

Supplementary Table 7: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 2 replicates, medium within condition variance, and moderate peak size variability. The
asterisk and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.

22



T
H

O
R

D
E

Se
q-

ID
R

M
A

C
S2

D
iff

R
ep

s

D
iff

B
in

d

D
E

Se
q-

JA
M

M

Po
is

so
n-

T
H

O
R

THOR
DESeq-IDR

MACS2
DiffReps ∗ +

DiffBind ∗ ∗
DESeq-JAMM ∗ ∗ ∗
Poisson-THOR ∗ ∗ ∗

Supplementary Table 8: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the
case with 2 replicates, high within condition variance, and moderate peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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THOR
DESeq-IDR

MACS2
DiffReps ∗ +

DESeq-JAMM ∗ ∗
Poisson-THOR ∗ ∗ ∗

DiffBind ∗ ∗ ∗ ∗

Supplementary Table 9: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider the
case with 2 replicates, low within condition variance, and high peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row with
significance levels of 0.05 and 0.1.
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DESeq-IDR

MACS2
DiffReps ∗

DESeq-JAMM ∗ ∗ +

Poisson-THOR ∗ ∗ ∗
DiffBind ∗ ∗ ∗ ∗

Supplementary Table 10: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 2 replicates, medium within condition variance, and high peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the row with
significance levels of 0.05 and 0.1.
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MACS2 ∗
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Poisson-THOR ∗ ∗
DESeq-JAMM ∗ ∗

DiffBind ∗ ∗ ∗ +

Supplementary Table 11: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 2 replicates, high within condition variance, and high peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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Supplementary Table 12: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 4 replicates, low within condition variance, and moderate peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the row with
significance levels of 0.05 and 0.1.
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Supplementary Table 13: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 4 replicates, medium within condition variance, and moderate peak size variability. The
asterisk and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.
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Supplementary Table 14: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 4 replicates, high within condition variance, and moderate peak size variability. The
asterisk and the cross, respectively, mean that the method in the column outperformed the method in the
row with significance levels of 0.05 and 0.1.
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DESeq-IDR ∗ ∗ ∗ ∗

Supplementary Table 15: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 4 replicates, low within condition variance, and high peak size variability. The asterisk and
the cross, respectively, mean that the method in the column outperformed the method in the row with
significance levels of 0.05 and 0.1.
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Supplementary Table 16: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 4 replicates, medium within condition variance, and high peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the row with
significance levels of 0.05 and 0.1.
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Supplementary Table 17: Friedman-Nemenyi hypothesis test results for the AUC metric. We consider
the case with 4 replicates, high within condition variance, and high peak size variability. The asterisk
and the cross, respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.1.
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AUC
THOR-HK 2.0
THOR-TMM 2.2667
macs2 4.2
DiffReps 4.6
DiffBind 4.7
DESeqIDR 5.2333
Poisson-THOR 6.2
csaw 6.8

Supplementary Table 18: Friedman ranking based on expression based DCA score (h = 500, H =
10000) for all datasets (CO, DC, LYMP and MM). The methods are displayed in decreasing order with
their respective Friedman ranking.
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THOR-HK
THOR-TMM

macs2
DiffReps +

DiffBind +

DESeqIDR ∗ ∗
Poisson-THOR ∗ ∗

csaw ∗ ∗ +

Supplementary Table 19: Friedman-Nemenyi hypothesis test results for the expression based DCA score
(h = 500, H = 10000). The asterisk and the cross, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.1.
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AUC
THOR-HK 2.3333
THOR-TMM 2.6667
PePr 4.8333
DiffReps 4.8889
macs2 5.0
DiffBind 5.3889
DESeqIDR 5.5556
Poisson-THOR 7.1111
csaw 7.2222

Supplementary Table 20: Friedman ranking based on expression based DCA score (h = 500, H =
10000) for datasets DC and LYMP. We restrict the analysis to DC and LYMP as PePr requires input-
DNA which is not provided by CO and MM. The methods are displayed in decreasing order with their
respective Friedman ranking.
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csaw ∗ ∗

Supplementary Table 21: Friedman-Nemenyi hypothesis test results for the expression based DCA score
(h = 500, H = 10000). The asterisk and the cross, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.1.

29



AUC
THOR-TMM 1.8095
THOR-HK 2.0
DiffBind 4.1905
DESeqIDR 5.2381
csaw 5.2857
macs2 5.4286
DiffReps 5.7619
Poisson-THOR 6.2857

Supplementary Table 22: Friedman ranking based on the histone based DCA score (h = 500, H =
10000) for all datasets (CO, DC, LYMP and MM). The methods are displayed in decreasing order with
their respective Friedman ranking.
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Poisson-THOR ∗ ∗

Supplementary Table 23: Friedman-Nemenyi hypothesis test results for the histone based DCA score
(h = 500, H = 10000). The asterisk and the cross, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.1.
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AUC
THOR-TMM 2.3333
THOR-HK 2.6667
DiffBind 4.1667
csaw 5.3333
DiffReps 5.5556
DESeqIDR 5.8333
macs2 6.1111
Poisson-THOR 6.3333
PePr 6.6667

Supplementary Table 24: Friedman ranking based on histone based DCA score (h = 500, H = 10000)
for datasets DC and LYMP. We restrict the analysis to DC and LYMP as PePr requires input-DNA which
is not provided by CO and MM. The methods are displayed in decreasing order with their respective
Friedman ranking.
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Supplementary Table 25: Friedman-Nemenyi hypothesis test results for the histone based DCA score
(h = 500, H = 10000). The asterisk and the cross, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.1.
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